

1

Infections in Solid Organ Transplant (SOT) Recipients SOT is a life-saving intervention 1,032,217 SOTs performed in U.S. since 1988 48,149 SOTs performed in 2024 ~40% increase over past decade SOT recipients Have compromised immunity / increased infection risk Are targets for common, emerging & opportunistic pathogens encountered pre- and post-transplant Often have atypical infection presentation owing to their compromised immunity / decreased inflammatory response Are on complex medical regimens; drug interactions common

What You Should Know for the Board Exam

- Infection risk varies based on
 - Organ transplanted

2

4

- · Time post transplant
- · Degree of immunosuppression
- · Prophylaxis regimen
- Unique exposures
- Key drug interactions and drug-induced syndromes
 - Calcineurin inhibitors and azoles, macrolides, rifampin (covered in another lecture)
 - · Sirolimus associated pneumonitis
 - Calcineurin inhibitors and TTP and PRES

51 Infections in Solid Organ Transplant Recipients

Speaker: Barbara Alexander, MD, MHS, FIDSA

What You Should Know for the Board Exam

- The following major clinical syndromes:
 - · CMV syndrome & disease
 - EBV & Post Transplant Lymphoproliferative Disorder (PTLD)
 - · BK virus nephropathy
 - · Aspergillosis, Mucormycosis & Cryptococcosis
 - Tuberculosis
 - Toxoplasmosis
 - · Donor-derived infections

Play the Odds

The data in the stem let's you "play the odds" as to the most likely diagnosis

- Patient completing valganciclovir prophylaxis 6 weeks prior presenting with fatigue, low grade fever and leukopenia
 - CM\
- Donor died from skiing accident in freshwater lake in Florida and recipient presents 3 weeks post transplant with encephalitis
 - Naegleria
- Renal transplant recipient on valganciclovir prophylaxis presents with asymptomatic renal dysfunction
 - BK Virus
- Lung transplant recipient planted vegetable garden 2 weeks prior while on posaconazole prophylaxis and presents with productive cough and cavitary lung lesion
 - Nocardia

6

5

Frequency, Type & Infection Source in the 1st Post Transplant Year

Transplant Type	Infection Episodes per Patient	Bacteremia	CMV Disease * (%)	Fungal Infections (%)	Most Common Source	
Lung	3.19	8-25	39	8.6	Pulmonary	
Liver	1.86	10-23	29	4.7	Abdomen & Biliary tract	
Heart	1.36	8-11	25	3.4	Pulmonary	
Kidney	0.98	5-10	8	1.3	Urinary tract	

7

Classic Timing of Infections Following Solid Organ Transplantation Conventional Opportunistic CMV EBY, VZV, RSV, Influenza, Adenovirus EBY, VZV, RSV, Influenza, Adenovirus CMV Wound Inter-Related Presumonjatis Candida Cyptococcus Presumonjatis Cyptococcus Presumonjatis Months Post Transplant

51 Infections in Solid Organ Transplant Recipients

*CMV, Cytomegalovirus; CMV disease rates in the absence of routine antiviral prophylaxis

Speaker: Barbara Alexander, MD, MHS, FIDSA ©2025 Infectious Disease Board Review, LLC

"Early" Bacterial Infections Following SOT

Type & site of early bacterial infection varies based on organ transplanted, surgical approach/technique & transplant center

- Risk of peritoneal soilage/infection greater in liver transplantation with Roux-en-Y biliary drainage
- Recipient colonization with resistant organisms (e.g. MRSA, VRE, CRE) pre-transplant, confers risk of post-transplant infection
- Cluster with unusual pathogen environmental problem?
 (e.g., Legionella, M. abscessus from hospital water distribution systems)

"Late" Bacterial Infections Following SOT

80% of Late Bacterial Infections are Community Acquired

- Streptococcus pneumoniae
 - Incidence significantly > in SOT (146/100,000) vs general population (12/100,000)
 - Vaccination recommended
- Listeria monocytogenes
 - Bacteremia (Gram + Rods) / Diarrhea / Meningitis
 - · Ampicillin treatment of choice
 - High relapse rate, treat for at least 3-6 wks

Kumar D et al., Am J of Transplant 2007;7:120

9

"Late" Bacterial Infections (Cont.)

- Nocardia species
- 1%-6% of all SOT recipients
- Presents most often as pulmonary nodules, CNS (15-20%), skin (15%), or bone (2-5%) lesions
- Diagnosis: Culture and/or histopathology
 - · Branching, filamentous Gram + Rods
 - Partially acid-fast by modified Kinyoun stain
 - · Nocardia is Neurotropic; brain imaging critical
- · Treatment:
 - High dose TMP-SMX drug of choice
 - Otherwise, based on susceptibility data & site of infection
- TMP-SMX dose used for PCP prophylaxis not protective

CMV Disease After SOT Indirect and Direct Effects

INDIRECT Effects:

- Acute and Chronic Rejection
- Opportunistic Super-Infections (Gram negative bacteria & Molds)

DIRECT Effects:

- CMV Syndrome most common presentation
 - CMV in blood + fever + malaise, leukopenia, atypical lymphocytosis, thrombocytopenia
- Tissue Invasive Disease
 - Evidence of CMV on biopsy + compatible signs/symptoms

11 12

51 Infections in Solid Organ Transplant Recipients

Speaker: Barbara Alexander, MD, MHS, FIDSA ©2025 Infectious Disease Board Review, LLC

CMV Serologic Status	Risk Category	Incidence of Disease (%)				
D+/R-	High	50+				
D+or D-/R+	Intermediate	10-15				
D-/R-*	Low	0				
ALA Therapy (R+)						
Induction	Intermediate	25-30				
Rejection	High	65				

CMV Disease After SOT Prophylactic Approaches

UNIVERSAL

All SOT recipients receive therapy during highest risk periods

- Expensive
- May induce resistance
- Some pts exposed unnecessarily

PREEMPTIVE

Treatment based on asymptomatic viral replication in blood

- Optimal viral threshold for initiating therapy not well defined
- Requires serial weekly monitoring with detection assay

NOTE: Typically Valganciclovir or IV Ganciclovir used for prophylaxis Letermovir now approved for use after Renal Transplant

13

CMV Prophylaxis After SOT

Bottomline:

- •D+/R- or ALA for rejection → Universal
 - First 3-6 months post-transplant
 - At least 1 month post-ALA for rejection
- •R+ → Universal or Preemptive
 - First 3-6 months post-transplant

CMV Disease After SOT

- Typically occurs 1-3 months post-transplant
 - Or after prophylaxis is stopped ("late onset")
- Disease of GI Tract and Eye may not have concurrent viremia
 - · Diagnosis often requires biopsy/aspiration
- Viral load may continue to rise during first 2 weeks of Rx
 - Don't repeat PCR until Day 14 of treatment, then weekly until negative
- Treat for 2-3 weeks...
 - · Resolution of symptoms AND clearance of CMV DNAemia
 - DO NOT STOP TIL VIREMIA CLEARs (high risk for relapse)

CMV Disease After SOT Ganciclovir Resistance

- Suspect resistance if prolonged (> 6 weeks) (val)ganciclovir exposure AND:
 - · No reduction in viral load after 14 days of treatment
 - · No clinical improvement after 14 days of treatment
- Management of suspected ganciclovir resistance:
 - Reduce immunosuppression
 - Switch to maribavir or foscarnet (± CMV hyperimmune globulin)

urain et al.JID 2002; Limaye et al Lancet 2000; Limaye et al JID 2002; Kotton et al Transplantation 2013.

17

Question #1

54-year-old male 60 days post-cardiac transplant was treated for rejection with steroids when fever and a non-tender anterior cervical mass appeared.

Biopsy showed nodal replacement by lymphocytes, many of which stained positively for Epstein-Barr virus as well as for the B cell marker, CD20. His plasma EBV viral load was 10,000 copies /ml.

©2025 Infectious Disease Board Review, LLC

What is the most appropriate treatment for this condition?

- A. Cidofovir
- B. Ganciclovir
- C. Acyclovir
- D. Cyclophosphamide
- E. Rituximab

19

51 Infections in Solid Organ Transplant Recipients

Epstein Barr Virus: Post Transplant Lymphoproliferative Disorder (PTLD)

- Virus establishes latency in B-lymphocytes which serve as lifelong reservoirs
- EBV transformed B-lymphocytes give rise to PTLD (a few cases may arise from T-lymphocytes)
- · Risk factors:

21

- > 1° EBV infection
- Donor seropositive, Recipient seronegative
- ➤ Anti-lymphocytic antibody therapy (T-cell depletion)
- Organ transplanted (Intestine > Lung > Heart > Liver > Kidney)

Epstein Barr Virus: Post Transplant Lymphoproliferative Disorder (PTLD)

Clinical manifestation - wide range

- · Febrile mononucleosis-like illness with lymphadenopathy
- Solid tumors
 - · Often involve transplanted graft
 - 50% are extranodal masses
 - 25% involve CNS

Definitive diagnosis requires tissue biopsy

- · WHO Pathology Classification based is gold standard for diagnosis
- · Molecular (PCR) tests available
 - · WHO Standard for Assay Calibration available
 - · Whole Blood vs Plasma controversial
 - Misses EBV-negative and some localized cases
 - Used as an aid for Diagnosis and Pre-emptive monitoring with stepwise reduction in immunosuppression to reduce PTLD rates

Petit B et al. Transplantation. 2002;73(2):265.

Peters AC et al. Transplantation. 2018; 102(9):1553.

Epstein Barr Virus: Post Transplant Lymphoproliferative Disorder (PTLD)

Treatment:

22

- Antivirals not effective on latently infected lymphocytes (antivirals only work in lytic phase)
- Reduce Immunosuppression (Response ~ 45%)
- Rituximab: Anti-CD20 monoclonal antibody (Response ~ 55%)
- Cytotoxic Combination (CHOP, ACVBP) Chemotherapy
 - Reserved for non-responsive disease
 - High treatment associated mortality (13%-50%)
- Adoptive Immunotherapy (EBV cytotoxic T-cells)
 - Under study

Allen et al. Clin Transplant. 2019;33(9):e13652

©2025 Infectious Disease Board Review, LLC

23 24

51 Infections in Solid Organ Transplant Recipients

HHV-8 Oncovirus Presentations

• Kaposi Sarcoma

• Skin, oral lesions

• Visceral involvement

• Primary effusion lymphoma; other large cell lymphomas

• Cytopathology alone may be insufficient for dx

• Flow cytometry and special staining required

• HHV-8 NAT from blood/fluid can be clue to dx

• Multicentric Castleman Disease (polyclonal B cell lymphoproliferative disorder)

• Kaposi Sarcoma Herpesvirus (KHSV) Inflammatory Cytokine Syndrome (KICS):

• Systemic inflammatory syndrome, often severe with shock/ multiorgan failure

• Most often occurs concurrently w/ KS

• Poor prognosis

KICS could show up on the Boards!

25 26

KICS: Working Definition 1. At least 2 Clinical Manifestations from at least 2 categories Symptoms: Fever, Fatigue, Edema, Cachexia, Respiratory Symptoms, GI disturbance, Arthralgia/myalgia, Altered mental state, Neuropathy Laboratory: Anemia, Thrombocytopenia, Hypoalbuminemia, Hyponatremia Radiographic: Lymphadenopathy, Splenomegaly, Hepatomegaly, Body Cavity, Effusions 2. Systemic Inflammation: CRP (≥ 3g/dL) 3. Elevated KSHV plasma viral load: HHV-8 ≥ 1000 copies/mL 4. No pathologic evidence of MCD or PEL (Requires biopsy of any lymphadenopathy if present) Pdizzotto, M. N., et al. Clinical Features and Outcomes of Patients With Symptomatic Kapoel Searcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV inflammation: Clinical Infectious Diseases 2016 62(6):730-738.

27 28

51 Infections in Solid Organ Transplant Recipients

Speaker: Barbara Alexander, MD, MHS, FIDSA ©2025 Infectious Disease Board Review, LLC

Question #2

- 52-year-old female S/P cadaveric renal transplant receiving tacrolimus, prednisone and mycophenolate
- Week 30 post transplant serum creatinine rose from 1.5 to 2.3 mg/dl
- · Tacrolimus levels were in therapeutic range
- Urinalysis revealed one plus protein and no cells or casts

Question #2

Which would be most helpful in understanding if BK virus was causing her renal failure?

- A. Presence of decoy cells in urine cytology
- B. Urine BK viral load

30

- C. Urine culture for BK virus
- D. Plasma BK viral load
- Demonstration of BK inclusions in renal tubular epithelium on renal biopsy

29

Polyomavirus BK Virus Nephropathy

- Ubiquitous, DNA virus
 - 1° infxn URI during early childhood
 - 80% worldwide population sero+
 - · Renal & uroepithelial cells, site of latency
- Cause of nephropathy post renal transplant
 - Up to 15% of renal recipients effected
 - Time to onset 28-40 weeks (majority within 1st yr post tx)
 - Manifests as unexplained renal dysfunction (as does rejection)

Hayashi RY et al. UNOS Database; Abstract 76, 2006 World Transplant Congress; Ramos et al. J Ar. Soc Nephrol 2002;13:2145; Hirsch et al. Transplantation, 2005;79:1277-128

BK Virus Nephropathy *Diagnosis*

- Replication in urine precedes replication in blood precedes nephropathy
- Renal Bx "Gold Standard" for diagnosis
- Blood PCR
 - Sensitive (100%) but less specific (88%)
 - Cannot rule out rejection
 - Useful as indicator for biopsy
- Urine Cytology, Electron microscopy, & PCR
 - Detection in urine: Low PPV but High NPV

Hirsch et al, Transplantation 2005;79:1277-128
Nickeleit et al, NEJM 2000;342 (18):1309-1315; Ramos et al. J Am Soc Nephi

31

BK Virus Nephropathy Treatment

- Reduce immunosuppression
- Case series with variable success using:
 - Low-dose cidofovir
 - Leflunomide

33

- New drugs & randomized controlled trials needed
- Preemptive monitoring key to prevention

Hirsch et al. Transplantation 2005;79:1277-1286; Farasati et al. Transplantation 2004;79:116; Vats et al. Transplantation 2004;79:116; Vats et al. Transplantation 2003;375:105; Kahambi et al. Am. I Transplant 2003;3:186; Williams et al. N. Fool. I Med 2005;382:1157-51

2003;75:105; Kabambi et al. Am J Transplant 2003;3:186; Williams et al N Engl J Med 2005;352:1157-58.

gan Trans	spian	ted		N=16,808		
	Kidney	Heart	Pancreas	Liver	Lung	Smal Bowe
12 Month IFI Incidence (%)	1.3	3.4	4.0	4.7	8.6	11.6
IFI Type (%)					70% Molds	
Candidiasis	49	49	76	68	23	85
Aspergillosis	14	23	5	11	44	0
Other molds	7	10	3	6	26	0
Cryptococcosis	15	10	5	6	2	5
Endemic	10	3	6	5	1	0
Pneumocystosis	1	3	1	0	2	0
Other	4	2	4	4	2	10

Invasive Fungal Infections Risk Factors After SOT Each solid organ group will have unique risks for IFIs Strongly influenced by medical & surgical factors including technical complexity Liver Lung Vulnerable anastomotic site •Re-transplantation Continuous environmental exposure •Pre-tx fulminant hepatic or renal failure •Aspergillus colonization of airways •Heavy Candida colonization peri-tx •CMV pneumonitis •Large volume intra-operative transfusions Acute rejection •Bleeding complications requiring re-operation Obliterative bronchiolitis Choledochojejunostomy **ASPERGILLUS CANDIDA**

Invasive Fungal Infections in

PCP, 1.3%

Cryptococcus, 8.4%

Zygomycetes, 1.9%

Other yeasts, 2.8% Endemic, 5.7%

Other moulds, 5.8%

Solid Organ Transplant Recipients

Aspergillus, 19%

Candida

Type of fungal infection varies depending on organ transplanted

35

51 Infections in Solid Organ Transplant Recipients

Speaker: Barbara Alexander, MD, MHS, FIDSA ©2025 Infectious Disease Board Review, LLC

Tuberculosis

- 34-74 fold higher risk of active disease in SOT recipients than general population
- Incidence 1% 6% (up to 15% in endemic areas)
- Median onset 9 months post-tx (0.5-144 months)
- · 33% of infections are disseminated at diagnosis
- Treatment
 - Rifampin-based regimens associated with graft loss/rejection in 25%
- Mortality ~30%
- Treat latent TB prior to transplant when possible

37

Question #3

- 35-year-old female s/p heart transplant in France 90 days prior presented with fever, dyspnea and a diffuse pneumonia on chest CT.
- She was receiving prednisone, tacrolimus & mycophenolate.
- Both recipient & donor were CMV negative; she was not on CMV prophylaxis.
- She was on inhaled pentamidine for PCP prophylaxis.

39 40

51 Infections in Solid Organ Transplant Recipients

Question #3

Trimethoprim-sulfamethoxazole was started empirically, and she began improving.

Bronchoalveolar lavage (BAL) was negative for:

- Pneumocystis by direct fluorescent antibody stain & PCR,
- Fungi by calcifour white / potassium hydroxide stain,
- · Mycobacteria by AFB smear,
- · Bacteria by gram stain, and
- · Respiratory viruses by multiplex PCR

Routine bacterial BAL and blood cultures were negative.

Question #3

Assuming trimethoprim-sulfamethoxazole was causing her improvement, which additional test on the BAL might have explained her improvement?

- A. PCR for CMV
- B. PCR for toxoplasmosis
- C. PCR for tuberculosis
- D. Galactomannan

42

E. Cold enrichment culture for Listeria

41

Toxoplasmosis

- After SOT, acute toxoplasmosis can develop from reactivation, acquisition via blood transfusion or ingestion of contaminated food or water, or from the donated organ
- Donor seropositive/Recipient seronegative at high risk
- HEART > LIVER > KIDNEY TRANSPLANT
- Presents with myocarditis, pneumonitis & meningitis
- · DIAGNOSIS:
 - PCR
 - Giemsa smear of BAL
 - Brain aspirate for tachyzoites
 - Immunoperoxidase stain of endocardial biopsy or other tissue
- TREATMENT: sulfadiazine-pyrimethamine-leucovorin

Question #4

Liver transplant recipient on Bactrim & valganciclovir prophylaxis

presented 21 days post transplant with confusion, tremors, lethargy, anorexia

- Rapid progressive neurologic decline \rightarrow agitation & delirium \rightarrow intubation
- Brain MRI: non-revealing
- · Blood & urine cultures: negative
- CSF: lymphocytic pleocytosis (25 WBCs/mm³) & elevated protein
 - Gram stain, bacterial, fungal cultures negative for organisms
- Empiric intravenous ganciclovir, vancomycin, ceftriaxone & ampicillin
- · Day 6 Repeat MRI: diffuse encephalitis
- · Expired 13 days after neurologic symptom onset
- Donor was previously healthy presenting with subarachnoid hemorrhage
 - Toxicology screen: + cocaine & marijuana
 - · Brain CT: expanding subarachnoid hemorrhage
 - · Recently on camping trip

43

Question #4

What is this presentation is most consistent with?

- A. CMV encephalitis
- B. HHV6 encephalitis
- C. VZV encephalitis
- D. Rabies encephalitis
- E. Cryptococcal meningitis

"Expected" Donor Derived Infections

- > Expected = known before tx or for which there are recognized standard prevention guidelines
 - Cytomegalovirus (CMV)
 - Epstein-Barr virus (EBV)
 - Toxoplasmosis

46

*United Network for Organ Sharing / Organ Procurement and Transplant Network

Ison M et al. Am J Transplant. 2009;9:1929-193

45

Typical Presentations Of Unexpected Donor Derived Infections					
	PATHOGEN	PRESENTATION			
Most present in the first 3 months post transplant	LYMPHOCYTIC CHORIOMENINGITIS VIRUS	ENCEPHALITIS			
	RABIES	ENCEPHALITIS			
Look for epidemiologic clues for potential donor exposure in the stem (e.g. possible bat bites, new pet hamsters, tap water nasal irrigations, recent travel to a region endemic for certain pathogens)	TOXOPLASMOSIS	DIFFUSE PNEUMONIA MYOCARDITIS RETINITIS ENCEPHALITIS			
	WEST NILE VIRUS	MENINGITIS ENCEPHALITIS POLIOMYELITIS-LIKE FLACCID PARALYSIS			
	CHAGAS' DISEASE	FEVER MYOCARDITIS			
	ACANTHAMOEBA	SKIN LESION ENCEPHALITIS			
	BALAMUTHIA MANDRILLARIS	ENCEPHALITIS			
	VISCERAL LEISHMANIASIS	PANCYTOPENIA HEPATOSPLENOMEGALY			
	MALARIA	FEVER			

47

51 Infections in Solid Organ Transplant Recipients

Vaccination Recommendations for SOT

Update vaccinations pre-SOT:

- COVID
- Hepatitis A, Hepatitis B, Flu, TDaP, Pneumococcal
- Live Varicella, MMR vaccines (≥4 wks pre-tx)
- HIB, Meningococcal if planned splenectomy (e.g. Multivisceral Tx)

Recommended post-SOT:

(Delay 1 month post-tx; 3–6 months to maximize response)

- COVID
- Pneumococcal
- · Tetanus-diphtheria toxoid
- · Inactivated Influenza

Live vaccines are NOT recommended after SOT including:

- Measles Mumps Rubella
- Varicella
- Inhaled influenza
- Oral polio
- · Yellow fever
- BCG
- Small pox
- Salmonella typhi (oral)

Solid Organ Transplant Patient Travel

- REGIONAL EXPOSURES
 - COCCIDIOIDOMYCOSIS: Southwest U.S.
 - HISTOPLASMOSIS: Central/Mid-Atlantic U.S.
 - · VISCERAL LEISHMANIASIS: Spain, Mediterranean Basin
 - · MALARIA: Tropics
 - BABESIA MICROTI: Northeast & Upper Midwest U.S.
- · AND ALL THE "NORMAL" RISKS TO TRAVELERS
 - DIARRHEA
 - STIs

50

- MDR-TB
- BLOOD SUPPLY (need for TRANSFUSIONS), etc...
- AVOID LIVE VACCINES: Yellow Fever, Oral typhoid, etc.
- DRUG INTERACTIONS → Transplant meds + travel related prophylactic agents

49

Key Drug Toxicities / Syndromes

- Calcineurin inhibitors and TTP and PRES (RPLS)
- · Sirolimus-induced pneumonitis
 - Progressive interstitial pneumonitis (22% in one study)
 - Risk factors: late switch to sirolimus & impaired renal function
 - Symptoms: dyspnea, dry cough, fever, and fatigue
 - Radiographic & bronchoalveolar lavage consistent with bronchiolitis obliterans organizing pneumonia & lymphocytic alveolitis
 - · Recovery with sirolimus withdrawal

Euvrard S et al. N Engl J Med. 2012;367(4):329. Champion L et al. Ann Intern Med 2006;144:505
Weiner SM et al. Nenbrol Dial Transplant. 2007;22(12):3631

Other Pearls for Boards...

If you're thinking PCP but its not → think TOXO

Patient presenting atypically during first month post transplant → think donor transmitted infection

• Rabies, WNV, Coccidioides, Chagas, LCMV (look for epidemiologic clues in stem)

Remember drug interactions and syndromes

- · Addition of mold active azole leading to acute kidney injury from elevated CNI
- TTP and PRES induced by calcineurin inhibitors
- Sirolimus-induced pneumonitis

Remember Strongyloides hyperinfection syndrome

TB- Don't miss a case!

BKV, CMV and EBV/PTLD - know how to diagnose and manage

