

1

Objectives

- Review the antibiotic treatment for infections caused by:
 - Extended-spectrum $\beta\text{-lactamase}$ producing Enterobacterales (ESBL-E)
 - AmpC β-lactamase producing Enterobacterales (AmpC-E)
 - Carbapenem-resistant Enterobacterales (CRE)

Clinical Infectious Diseases

IDSA GUIDELINES

Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections

Pranita D. Tamma, ^{1,0} Emily L. Heil, ² Julie Ann Justo, ³ Amy J. Mathers, ⁴ Michael J. Satlin, ⁵ and Robert A. Bonomo ⁶

Provides guidance on the treatment of:

- Extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E)
- AmpC beta-lactamase producing Enterobacterales (AmpC-E)
- · Carbapenem-resistant Enterobacterales
- · Pseudomonas aeruginosa with difficult-to-treat resistance
- Carbapenem-resistant Acinetobacter baumannii complex
- Stenotrophomonas maltophilia infections

www.idsociety.org/practice-guideline/amr-guidance/

3

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

ESBL-E Infections

Clinical Case

- 18-year-old female
- Renal transplant secondary to focal segmental glomerulosclerosis
- Multiple urinary tract infections in the past including <1 month ago
- Dysuria, fevers, rigors, and hypotension
- ICU to initiate vasopressors
- Urine and blood cultures growing Escherichia coli

Antibiotic	MIC	Interpretation*
Amikacin	>8 µg/mL	R
Aztreonam	16 μg/mL	R
Cefazolin	>16 µg/mL	R
Cefotetan	2 μg/mL	S
Cefepime	4 μg/mL	SDD
Ceftazidime	>16 µg/mL	R
Ceftriaxone	32 μg/mL	R
Ciprofloxacin	1 μg/mL	R
Ertapenem	0.5 μg/mL	S
Gentamicin	2 μg/mL	R
Meropenem	0.5 μg/mL	S
Piperacillin-tazobactam	8/4 µg/mL	S
Tobramycin	1 μg/mL	S
Trimethoprim-sulfamethoxazole	0.5/4 µg/mL	S

Antibiotic	MIC	Interpretation*
Amikacin	>8 µg/mL	R
Aztreonam	16 μg/mL	R
Cefazolin	>16 µg/mL	R
Cefotetan	2 μg/mL	S
Cefepime	4 μg/mL	SDD
Ceftazidime	>16 µg/mL	R
Ceftriaxone	32 μg/mL	R
Ciprofloxacin	1 μg/mL	R
Ertapenem	0.5 μg/mL	S
Gentamicin	2 μg/mL	R
Meropenem	0.5 μg/mL	S
Piperacillin-tazobactam	8/4 μg/mL	S
Tobramycin	1 μg/mL	S
Trimethoprim-sulfamethoxazole	0.5/4 μg/mL	S

*Applying Clinical and Laboratory Standards Institute 2024 breakpoints

8

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Question #1

Which of the following is the preferred initial agent for a women presenting with bacteremia secondary to a urinary tract infection caused by ESBL-producing *Escherichia coli*?

- A. Ceftriaxone
- B. Piperacillin-tazobactam
- C. Cefepime

9

11

- D. Meropenem
- E. Ceftazidime-avibactam

A Primer on ESBL-E

- ESBLs are enzymes that inactivate penicillins, cephalosporins, and aztreonam
 - Do not inactivate non-β-lactam agents (e.g., aminoglycosides, TMP-SMX, ciprofloxacin, doxycycline)
- Organisms carrying ESBL genes often harbor antimicrobial resistance determinants to a broad range of antibiotics
- Most commonly produced by Escherichia coli, Klebsiella pneumoniae, & Klebsiella oxytoca
 - Less than 10% of other Enterobacterales species produce ESBL enzymes
- Routine ESBL testing not performed by most clinical microbiology laboratories on all specimens; if performed often limited to blood isolates
 - Ceftriaxone MICs ≥2 µg/mL for the above species often used as a surrogate by clinicians for ESBL production (limited specificity and perhaps overly sensitive)
- CTX-M enzymes are the most common ESBLs
 - About 10-15% of ESBL enzymes are not CTX-M enzymes

10

What are Some Concerns with Tazobactam as an ESBL Inhibitor?

- 1. Designed to inhibit SHV and TEM ESBL variants and not CTX-M ESBLs
- Tazobactam effectiveness may be diminished with increased expression of ESBL enzymes, multiple ESBLs, or presence of other β-lactamases (e.g., OXA-1, AmpC enzymes)
 - Only 8:1 ratio of piperacillin to tazobactam compared to 2:1 ratio of ceftolozane to tazobactam
- Piperacillin-tazobactam breakpoint for Enterobacterales exclusively based on pharmacokinetic-pharmacodynamic considerations of piperacillin and not tazobactam

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Blood culture collected in adult patients Empiric therapy decided by with suspected sepsis treating clinicians Blood culture positive on Gram stain for Gram-negative bacilli Identified as E. coli or K. pneumoniae by local laboratory standard method Required randomization within Isolate confirmed as non-susceptible 72 hours of initial blood culture to ceftriaxone, susceptible to collection piperacillin-tazobactam and Study drug continued for minimum 4 days post Meropenem Piperacillin-tazobactam randomization (to maximum of 14 (n=191)(n=188)days) 1 gram every 8 hours 4.5 grams every 6 hours Harris PNA, et al. JAMA. 2018; 320:984-994

13 14

15

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

ClinicalTrials.gov

PipEracillin Tazobactam Versus
mEROPENem for Treatment of
Bloodstream Infections Caused by
Cephalosporin-Resistant
Enterobacteriaceae (PETERPEN)

Study Start: May 2019
Study Completion: April 2026
Estimated Enrollment: 1,084 participants

17

Selecting the Right Carbapenem

Critically III

- Meropenem and imipenem have shorter half-lives allowing for more frequent dosing, optimizing T>MIC
- Critically ill patients may have altered drug metabolism (e.g., augmented renal clearance), leading to suboptimal ertapenem drug levels

Hypoalbuminemia

- Ertapenem is highly protein bound (~90%), prolonging serum half-life
- With hypoalbuminemia, the free fraction of ertapenem increases, increasing ertapenem clearance
- 30-day mortality greater than 4 times higher with ertapenem compared to meropenem/imipenem for patients with hypoalbuminemia

Cefepime for ESBL-E Infections

- CTX-M enzymes generally hydrolyze cefepime
- No clinical trials comparing cefepime and carbapenems for ESBL-E bloodstream infections
- Poorer outcomes with cefepime compared to carbapenems for the treatment of ESBL-E bloodstream infections in multiple comparative effectiveness studies

19 20

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Returning to the Clinical Case

- 18-year-old female
- Renal transplant secondary to focal segmental glomerulosclerosis
- Multiple urinary tract infections in the past including <1 month ago
- Dysuria, fevers, rigors, and hypotension
- ICU to initiate vasopressors
- Urine and blood cultures growing Escherichia coli

Antibiotic	MIC	Interpretation
Amikacin	>8 µg/mL	R
Aztreonam	16 μg/mL	R
Cefazolin	>16 µg/mL	R
Cefotetan	2 μg/mL	S
Cefepime	4 μg/mL	SDD
Ceftazidime	>16 µg/mL	R
Ceftriaxone	32 μg/mL	R
Ciprofloxacin	1 μg/mL	R
Ertapenem	0.5 µg/mL	S
Gentamicin	2 μg/mL	R
Meropenem	0.5 µg/mL	S
Piperacillin-tazobactam	8/4 µg/mL	S
Tobramycin	1 μg/mL	S
Trimethoprim-sulfamethoxazole	0.5/4 μg/mL	S

Take-Home Points: ESBL-E Bloodstream Infections

- Pre-clinical and clinical data support the use of carbapenems for ESBL-E bloodstream infections, at least initially
 - Meropenem/imipenem: Preferred over ertapenem while patient critically ill or with low albumin: otherwise ertapenem reasonable
 - Piperacillin-tazobactam: Not preferred for bloodstream infections; may be reasonable for UTI if not ill-appearing and no concerns for complicated UTI (e.g., renal abscess, renal stone, indwelling stents that cannot be removed)
 - Cefepime: Available data do not support it for ESBL-E infections
 - Cefepime-enmetazobactam: May become a preferred treatment for ESBL-E infections
- Oral TMP-SMX, ciprofloxacin, levofloxacin, are reasonable for ESBL-E bloodstream infections, usually after some clinical improvement
 - Sulopenem: May become a future option for step-down therapy but not enough data at the present time

21 22

AmpC-E Infections

Clinical Case

- 21-year-old male with colon cancer
- Fevers, abdominal pain, and mental status changes one week after partial colectomy
- Multiple intra-abdominal abscesses
- Blood cultures growing Enterobacter cloacae complex

23

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Antibiotic	MIC	Interpretation
Amikacin	>8 μg/mL	S
Aztreonam	16 μg/mL	R
Cefazolin	>16 µg/mL	R
Cefotetan	16 μg/mL	R
Cefepime	≤1 µg/mL	S
Ceftriaxone	1 μg/mL	S
Ciprofloxacin	0.25 μg/mL	S
Ertapenem	0.5 μg/mL	S
Gentamicin	2 μg/mL	R
Meropenem	0.5 μg/mL	S
Piperacillin/tazobactam	4/4 μg/mL	S
Tobramycin	2 μg/mL	S
Trimethoprim/sulfamethoxazole	≥4/76 µg/mL	R

Question #2

Which of the following is the preferred regimen for a patient with an intra-abdominal abscess in the setting of *Enterobacter cloacae* bacteremia, with *E. cloacae* exhibiting susceptibility to ceftriaxone, cefepime, piperacillin-tazobactam, and meropenem?

- A. Cefepime plus metronidazole
- B. Ceftriaxone plus metronidazole
- C. Ceftazidime-avibactam
- D. Meropenem-vaborbactam
- E. Piperacillin-tazobactam

25 26

Three Main Mechanisms of Excessive AmpC Production

- Inducible chromosomal ampC expression
 - Inducible ampC expression often in the presence of specific antibiotics
- Stable chromosomal ampC de-repression
 - Some Enterobacterales isolates (e.g., some E. coli) contain mutations in promoters or attenuators of ampC or other regulatory genes, stably de-repressing ampC gene expression
- · Plasmid-mediated (sometimes chromosomal) ampC genes
 - ampC genes carried on plasmids (and integrated into chromosome of some species)
 - Examples: $bla_{\rm CMY}$, $bla_{\rm FOX}$, $bla_{\rm DHA}$, $bla_{\rm ACT}$, $bla_{\rm MIR}$

Overview of AmpC-E

- · AmpC enzymes assist with bacterial cell wall recycling
 - Organisms producing AmpC enzymes even at low levels produce sufficient enzymes to hydrolyze ampicillin, ampicillin-sulbactam, cefazolin, cephamycins
- Inducible AmpC production: Capable of hydrolyzing certain antibiotics even though the bacteria initially seems susceptible to those agents
 - Most notorious = **ceftriaxone** (and other third-generation cephalosporins)
- Enterobacter cloacae, Citrobacter freundii, Klebsiella aerogenes have a reasonable likelihood of excessive AmpC production if exposed to ceftriaxone
 - Emergence of resistance while receiving ceftriaxone ~20% of the time
- Serratia marcescens, Morganella morganii, and Providencia spp. are significantly less likely to have excessive AmpC production if exposed to ceftriaxone
 - Emergence of resistance while receiving ceftriaxone <5% of the time

27

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

(_		ntibiot pC Pr			th
	bla _{CMY-2}	Piperacillin- tazobactam	Aztreonam (µg/mL)	Ceftazidime	Cefepime (µg/mL)	Imipenem (µg/mL)	Erta (µg

E. coli Isolate	bla _{CMY-2} copy number	Piperacillin- tazobactam (μg/mL)	Aztreonam (µg/mL)	Ceftazidime (μg/mL)	Cefepime (µg/mL)	Imipenem (µg/mL)	Ertapenem (µg/mL)
Parent strain	1	4	2	32	0.12	0.12	0.02
Mutant 1	13	512	64	512	4	0.5	0.38
Mutant 2	3	64	32	128	0.5	0.12	0.12
Mutant 3	7	256	32	256	1	0.25	0.19

Kurpiel KM, et al. J Antimicrob Chemother 2012; 67:339-45

29

Cefepime

- Cefepime has the advantage of both being a weak inducer of ampC and of withstanding hydrolysis by AmpC β-lactamases
 - It is considered a preferred agent for the treatment of AmpC-E infections

31

32

30

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Piperacillin-Tazobactam

- Tazobactam is less effective at inhibiting AmpC hydrolysis in vitro than newer β-lactamase inhibitors, such as avibactam, relebactam, and vaborbactam
- The role of piperacillin-tazobactam in treating Enterobacterales at risk for clinically significant AmpC production remains uncertain

33

MERINO 2

Outcomes	Piperacillin-tazobactam (n=38)	Meropenem (n=34)	P-value
Composite outcome at day 30	29%	21%	0.41
Death	0%	6%	0.13
Clinical failure	21%	12%	0.29
Microbiological failure	13%	0%	0.03
Microbiological relapse	0%	9%	0.06

Includes patients with Enterobacter spp., Citrobacter freundii, Morganella morganii, Providencia spp., or Serratia marcescens bloodstream infections

Stewart AG, et al. Open Forum Infect Dis. 2021;8:ofab387.

Returning to the Clinical Case

- 21-year-old male with colon cancer
- Fevers, abdominal pain, and mental status changes one week after partial colectomy
- Multiple intra-abdominal abscesses
- Blood cultures growing Enterobacter cloacae complex

Antibiotic	MIC	Interpretation
Amikacin	>8 µg/mL	s
Aztreonam	16 µg/mL	R
Cefazolin	>16 µg/mL	R
Cefotetan	16 μg/mL	R
Cefepime	≤1 µg/mL	S
Ceftriaxone	1 μg/mL	S
Ciprofloxacin	0.25 μg/mL	S
Ertapenem	0.5 μg/mL	S
Gentamicin	2 μg/mL	R
Meropenem	0.5 μg/mL	S
Piperacillin-tazobactam	4/4 μg/mL	S
Tobramycin	2 μg/mL	S
Trimethoprim-sulfamethoxazole	≥4/76 µg/mL	R

35

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Take-Home Points: AmpC-E Infections

- Ceftriaxone is generally not suggested for the treatment of infections caused by AmpC-E, outside of uncomplicated cystitis
 - Most concerning organisms: E. cloacae, K. aerogenes, C. freundii
- For organisms at lower risk of moderate AmpC production (e.g., S. marcescens) ceftriaxone is generally sufficient
- Cefepime is generally an effective treatment option for AmpC-E infections
- Data less favorable for piperacillin-tazobactam for AmpC-E infections
- · Save the carbapenems for infections where there are fewer options!
- Fluoroquinolones, aminoglycosides, trimethoprim-sulfamethoxazole, and doxycycline, are not substrates for AmpC hydrolysis and remain treatment options for AmpC-E infections

CRE Infections

37

Defining Carbapenem-Resistant Enterobacterales (CRE)

- Enterobacterales resistant to at least one carbapenem antibiotic
- Often produce a carbapenemase enzyme
 - Klebsiella pneumoniae carbapenemases (KPCs)
 - New Delhi metallo-β-lactamases (NDMs)
 - Verona integron-encoded metallo- β -lactamases (VIMs)
 - Imipenem-hydrolyzing metallo- β -lactamases (IMPs)

Oxacillinases (OXA-48-like)

Metallo-β-Lactamases (MBLs)

KPC-Producing Enterobacterales

- Most common carbapenemases in the United States
- Can occur with any Enterobacterales; not unique to *K. pneumoniae*
- Treatment options

40

- Preferred: Meropenem-vaborbactam > ceftazidimeavibactam > imipenem-cilastatin-relebactam
- Alternative: Cefiderocol

Sabour S, et al. Antimicrob Agents Chemother 2021; 65(e0110521). van Duin D, et al. Lancet Infect Dis 2020; 20:731-74

39

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

NDM-Producing Enterobacterales

- Rare but increasing in the United States
- Main risk factor: previous medical care in Indian subcontinent; but clear risk factors not always present

Treatment options

- Preferred: aztreonam-avibactam (or if not available, ceftazidime-avibactam PLUS aztreonam); cefiderocol
- Comparative effectiveness studies between the two agents not available

41 42

A Brief Overview of NDM-Producing Enterobacterales

- Require zinc at their active site for β-lactam hydrolysis
 - Variants with lower zinc requirements emerging, enabling them to thrive in settings of relative zinc scarcity, which is common in states of human infection
- Easy transferability of bla_{NDM} between species on mobile genomic elements
- bla_{NDM} detected in 2008 in K. pneumoniae and E. coli isolates from a patient returning to Sweden from India
 - By 2010, NDM-producing bacteria in drinking water in New Delhi
- Over 60 different variants of NDM circulating

44

43

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

Aztreonam-Avibactam: Activity Against MBL-Producing Enterobacterales

Enzyme	n	MIC ≤4 μg/mL	MIC 90 μg/mL
NDM	1421	98%	0.5
VIM	242	100%	1
IMP	49	100%	1
All MBL	1707	98%	1

Rosolini GM, et al. J Glob Antimicrob Resist. 2024:123-131.

45

46

Cefiderocol

- Innate immune system minimizes free iron in response to bacterial infections
 - Most iron bound to hemoglobin, myoglobin, or iron binding proteins
- Bacteria upregulate production of their native siderophores
 - Iron-chelating compounds that scavenge for free iron
- Cefiderocol is a siderophore (competing with bacterial siderophores) conjugated to a cephalosporin
- "Trojan Horse" approach to enter bacteria through iron transport channels
 - Not impacted by porins or efflux pumps
 - Once across outer membrane, cefiderocol dissociates from iron molecule and binds to PBP3, disrupting cell wall synthesis

Emergence of Resistance to Aztreonam-Avibactam & Cefiderocol

- Aztreonam and cefiderocol bind primarily to PBP3
- 4 amino acid PBP3 insertions result in inactivity of aztreonam-avibactam and cefiderocol MICs, particularly when present with CMY (i.e., AmpC) enzymes
- Represent >50% of NDM-producing E. coli in India
 - · Now present in all regions of the world

47

48

3 Core Concepts: Antibacterial Drugs I Approach to Resistant Gram-Negative Bacilli

CRE: Take-Home Points

- KPC: most common carbapenemase globally
- NDM: hint medical care in South Asia

Preferred treatment

- KPC-producers: meropenem-vaborbactam > ceftazidimeavibactam > imipenem-cilastatin-relebactam
- NDM-producers: cefiderocol = aztreonam-avibactam (if not available, ceftazidime-avibactam PLUS aztreonam)

49