
Speaker: Camille Kotton, MD

1

Disclosures of Financial Relationships with Relevant Commercial Interests

Company	Role	Details
Evrys	Consultant	CMV treatment in transplant
Merck	Consultant, Adjudication committee member, Data monitoring committee, symposium speaker (CME)	Transplant infections CMV antiviral trial, adjudication Pneumococcal vaccine, adjudication
Shire/Takeda	Consultant, Adjudication committee member, symposium speaker (CME)	CMV management in transplant patients
AiCuris	Research, consultant	Local PI, use of pritelivir in immunocompromised patients with resistant herpes
QIAGEN	Consultant, research, speaker	CMV diagnostics
Roche Diagnostics	Consultant, speaker	Review of risk factors for herpes viral infections after transplant, viral load testing
Kamada	Consultant, research, speaker	Immunoglobulins for CMV, measles
Biotest	Consultant, speaker	Immunoglobulins for CMV

2

Outline: What I Hope You Will Learn

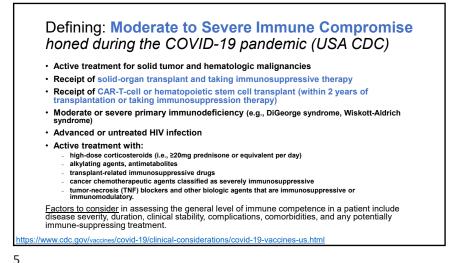

- · Type of immunosuppression seen with organ and stem cell transplant
- Timelines of infection
- Prevention is paramount
 - Gaps in prophylaxis help develop the differential diagnosis
- Syndromes
- Diagnostics
 - Differential diagnosis is broad, imperative to obtain diagnosis
- Treatment including drug interactions
- · Latest strategies for prevention, recognition, diagnosis, and treatment Guidelines
 - Best practices for safety and practice improvement
- · Bootcamp: meant as an introduction to subsequent similar talks

Table. Self-Reported Status of Immunosuppression for 2021 Unweighted data, No. (%) Veighted prevalence er 100 US population, Total s Had immuno (n = 2123) (N = 29164) Prevalence of % CI) Had immunosuppression 6.6 (6.2-6.9) Immunosuppression Among US Sex 13 246 (45.4) 737 (35.3) 5.2 (4.8-5.7) Adults, Martinson & Lapham, Male Female 15 918 (54.6) 1351 (64.7) 7.9 (7.4-8.4) JAMA Feb 2024 Race and ethnicity¹ 229 (11.0) 5.0 (4.3-5.8) Hispanic 4044 (13.9) CDC National Health Interview Survey Non-Hispanie African American or Black 3126 (10.7) 222 (10.6) 6.1 (5.2-7.2) American Indian or Alaska Nati 401 (1.4) 43 (2.1) 8.4 (6.0-11.7) 6.6% are immunosuppressed Asiar 1774 (6.1) 70 (3.3) 3.7 (2.8-4.8) 4.4% reported immunosuppressive White 19 458 (66.7) 1508 (72.2) 7.4 (6.9-7.8) 4.2 (2.3-7.3) Other 361 (1.2) 16 (0.8) condition Age group, y 3.9% take an immunosuppressive 18-29 3836 (13.2) 141 (6.8) 3.3 (2.8-4.0) medication 30-39 4713 (16.2) 224 (10.7) 4.5 (3.8-5.2) 6.6 (5.8-7.4) • 1.8% report both immunosuppressive 40-49 4341 (14.9) 300 (14.4) 50-59 422 (20.2) 8.7 (7.8-9.6) 4731 (16.2) condition and medication 60-69 514 (24.6) 9.5 (8.6-10.5) 5341 (18.3) 70-79 4059 (13.9) 355 (17.0) 89(79-100) This number has doubled in the past >80 2143 (7.3) 132 (6.3) 6.6 (5.4-8.1) Health insur Insured 27 210 (93.3) 2018 (96.6) 6.9 (6.6-7.3) 1954 (6.7) 70 (3.4) 3.0 (2.2-3.9) Uninsured

3

decade

Speaker: Camille Kotton, MD

Broad Categorization of Examples of Immunocompromised Status Based on Medical Condition or Immunosuppressive Treatment

Risk Category	Example Health Condition	Example Therapeutics
Higher risk immunocompromised patients	 Stem cell transplant <2 y Graft versus host disease, grade 3 or 4 Hematological malignancy on therapy Lung transplant Fewer than 1% peripheral B-cells assessed in past 6 mor 	 B-cell depleting agents in past 12 months (eg, rituximab, ofatumumab, ocretizumab, others, ORF: Therapy in past 12 months Abstacept
Moderate risk immunocompromised patients	 Solid organ transplant other than lung Solid tumor on treatment Congenital agammaglobulinemia Graft versus host disease, grade 1 or 2 HIV infection with CD4 <200 cells/mm³ Other severe primary immundedficiency 	 Tyrosine kinase inhibitor (eg, ibrutinib, acalabrutinib, others) High-dose corticosteroids (>20 mg prednisone or equivalent for >4 wks) Anthracycline derivates
Lower risk immunocompromised patients	 HIV infection with CD4 >200 cells/mm³ Inflammatory bowel disease Cirrhosis ESRD Solid tumor (treatment >12 months prior) 	 Anti-TNF Anti-IL-6 Anti-IL-12 and -23 Corticosteroids s.10 mg long-term, or <20 mg for <4 wks Intra-articular steroids

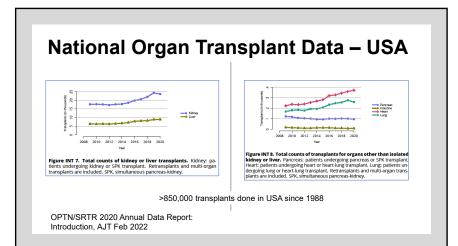
2024 Clinical Practice Guideline Update by the Infectious Diseases Society of America on the Management of COVID-19: Anti-SARS-COV-2 Neutralizing Antibody Pemivibart for Pre-exposure Prophylaxis Clinical Infectious Diseases, ciae435, https://doi.org/10.1093/cid/ciae4359 bublished: 29 October 2024

6

The Less Immunocompromised HostStem cell transplant recipients > 2 years post-transplant, not on immunosuppressive drugs, no graft versus host disease Chemotherapy for leukemia/lymphoma or cancer more than 3 months earlier with malignancy in remission Those who have received immunotherapy with agents such as checkpoint inhibitors may need longer HIV patients with >500 CD4 lymphocytes Asplenia Nutritional deficiencies Steroid inhalers, topical steroids, intra-articular, bursal, or tendon injection of steroids, or on high-dose steroids over a month ago

"Net state of immunosuppression" Dr. Robert Rubin,

Massachusetts General Hospital


IMMUNOSUPPRESSION IS ADDITIVE/A COMPOSITE OF RISK FACTORS

- · Disease state may alter the immune system
- Autoimmune diseases
- Advanced organ failure
- Other organ compromise: kidney, liver
- Comorbidities/conditions
- Diabetes, obesity, malnutrition/weight loss
- Hypogammaglobulinemia
- Viral infections (HIV, CMV, EBV, HCV)
- Altered microbiome
- Advanced age

Exogenous immunosuppression

- Pre-transplant immunosuppression (i.e., autoimmune hepatitis)
- Induction agents @ time of transplant
- Chronic immunosuppression
- Treatment of rejection

Speaker: Camille Kotton, MD

Types of Stem Cell Transplants: a Spectrum

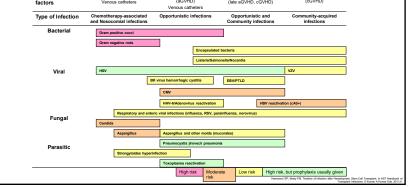
Autologous stem cell transplant (lower infection risk)

 The patient's own stem cells are collected before high-dose chemotherapy and then reintroduced after treatment. This allows for high doses of chemotherapy that would otherwise kill the patient's normal blood cells.

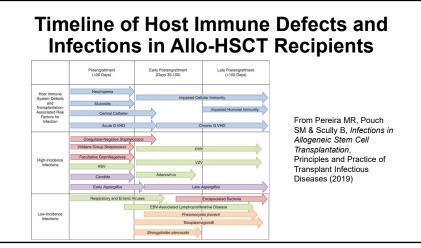
Allogeneic stem cell transplant (higher infection risk)

- Stem cells from a donor, who can be a blood relative or someone who is not related but is a close genetic match
- · Haploidentical: stem cells from a "half-matched" donor
- Cord blood: stem cell found via an umbilical cord blood bank
- Reduced-intensity allogeneic stem cell transplantation (also called minitransplant or nonmyeloablative transplant): conditioning treatment contains lower, less toxic doses of chemotherapy and radiation

10


12

9


Cente	Number of HCTs Perforn er for International Blood an arch, 2016-2020			
	Donor Type	Number	%	
	Autologous:	66,458	59%	
	Allogeneic:			
	HLA-Matched Sibling	10,792	10%	
	Other Related Donor	10,037	9%	
	Unrelated	24,697	22%	
	Total	111,984	100	

https://bloodstemcell.hrsa.gov/data/donation-and-transplantation-statistics/transplant-activity-report#summary accessed 18 March 2025

Timeline of Infection after HSCT Time Period Pre-engraftment Early post-engraftment Mid post-engraftment Late post-engraftment (day 0 to day 10-30*) (to day 100) (to 1-2 years) (after 1-2 years) Infection risk Neutropenia, Mucositis Immunosuppres (cGVHD) factors Venous catheters (aGVHD) (late aGVHD_cGVHD) Venous catheter

Speaker: Camille Kotton, MD

Common Immunosuppression after *Allogeneic* Stem Cell Transplant (not Autologous*)

- Chemotherapy
- Anti-graft versus host disease prophylaxis
 - Tacrolimus, cyclosporine
 - Methotrexate
 - Mycophenolate mofetil
 - Antithymocyte globulin (rabbit)
- · Anti-graft versus host disease treatment
 - The first-line treatment of acute GVHD is methylprednisolone

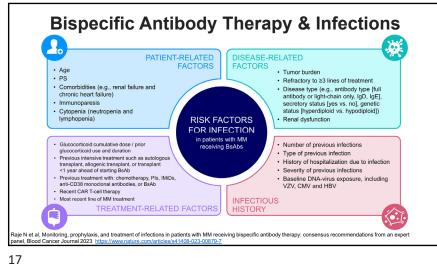
* Immunosuppression generally not needed

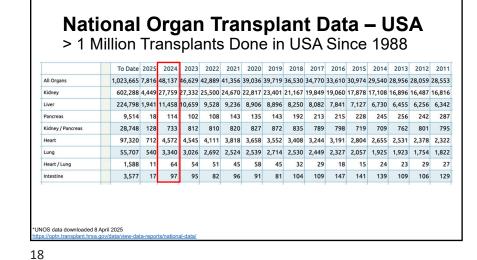
14

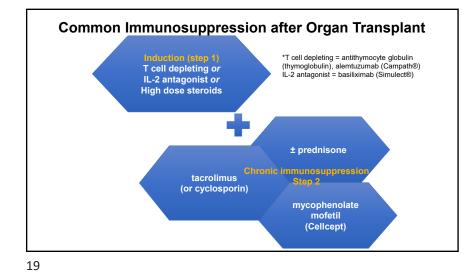
16

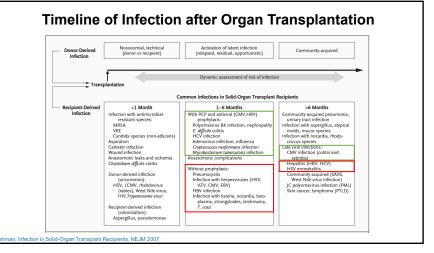
13

Infectious Complications from CAR-T Cell Therapy


Reference	CAR T-cell therapy	N	Underlying malignancy	Severity grade	Timepoint	Bacterial infection incidence (n, %)	Viral infection incidence (n, %)	Fungal infection incidence (n, %)
Abramson et al.21	Lisocabtagene maraleucel	269	R/R B-cell lymphoma	>3	12 months	27/269 (10)	4/269 (1)	2/269 (1)
Locke et al. ³⁸	Axicabtagene ciloleucel	108	Refractory B- cell lymphoma	All	12 months	44/108 (40)	11/108 (10)	7/108 (6)
Logue et al. ³⁵	Axicabtagene ciloleucel	85	R/R B-cell lymphoma	All	≼30 days	26/85 (31)	12/85 (14)	2/85 (2)
					>30 days	13/85 (15)	19/85 (22)	0/85 (0)
Wittmann Dayagi et ol. ³⁶	CD28-based CAR T cells	88	R/R B-cell lymphoma	All	≼30 days	22/85 (25)	14/85 (16)	0/85 (0)
					30-60 days	8/85 (9)	2/85 (2)	1/85(1)
Baird et ol. ³²	Axicabtagene ciloleucel	41	R/R B-cell lymphoma	All	≼28 days	7/41 (17.1)	8/41 (19.5)	4/41 (9.8)
					>28 days	10/41 (24.4)	10/41 (24.4)	9/41 (22)
Wudhikarn et al. ²²	Axicabtagene ciloleucel OR tisagenlecleucel	60	R/R DLBCL	All	≼30 days	20/60 (33)	10/60 (17)	1/60 (2)
					>30 days	14/60 (24)	17/60 (28)	3/60 (5)
Hill et al. ²¹	Anti-CD19 CAR autologous T cells	133	ALL, CLL, NHL	All	<28 days	22/133 (16.5)	11/133 (8.3)	4/133 (3)
					>28 days	7/119 (5.9)	11/119 (9.2)	2/119 [1.7]
Munshi et al. ⁶¹	Idecabtagene vicleucel	54	R/R multiple myeloma	All	12 months	13/54 (24)	15/54 (28)	4/54 (7)

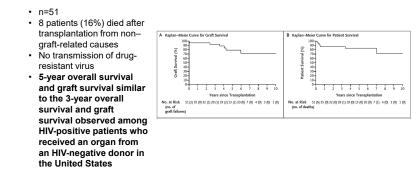

CAR-T Cell Therapy & Infectious Complications


- Chimeric antigen receptor (CAR) T-cell therapy involves lymphocyte engineering to produce CARs directed towards tumor cell antigens
- Can be profoundly immunosuppressed and often cytopenic, via a multitude of patient- and treatment-related factors.
 - $_{-}$ ~1/3 patients will suffer a serious bacterial infection in the first 30 days


 - CMV rare, seen w/in 6 weeks, 5/72 needed treatment*
 - Fungal infection is uncommon (<5%)
- Numerous off-target effects can cause toxicity-related adverse events
 - cytokine release syndrome
 - immune effector cell neurotoxicity syndrome

Stewart AG and Henden AS, Infectious complications of CAR T-cell therapy: a clinical update. Ther Adv Infect Dis. 2021. *Kampouri E et al, CMV Reactivation and CMV-Specific Cell-Mediated Immunity after Chimeric Antigen Receptor T-Cell Therapy , CID 2023 Speaker: Camille Kotton, MD

©2025 Infectious Disease Board Review, LLC


Speaker: Camille Kotton, MD

What's Trendy? (Might be on boards?) Hepatitis C Donors and Organ Transplant

- Many programs are using hepatitis C positive donors into negative or positive recipients and treating after transplant
 Yes, we are infecting people with hepatitis C
- · Can be either HCV viral load and/or antibody positive
- For all organs, ~100% clearance
- Was often research protocol, now moving towards standard of care
- Need to have a good plan for medications (insurance)
- Trend towards shorter treatment protocols

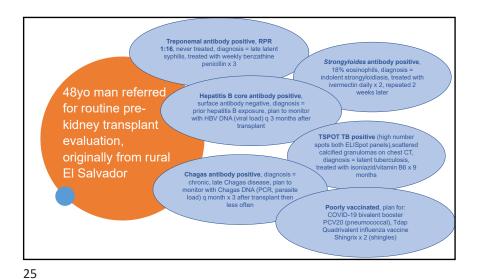
21

Longer-Term Outcomes of *HIV-Positive-to-HIV-Positive Renal Transplantation*, Selhorst, Muller et al, NEJM 2018

22

HIV Organ Policy Equity (HOPE) Act: USA

- Permits donated, HIV-positive organs to be used for transplantation in HIV-positive patients (only)
 - Previously prohibited by federal law
- An active program at multiple centers
 - Previously research setting only, moving towards standard of care (kidney, liver)
 Will remain research program for heart and lung transplant (for now)
- +/- Half of organ donors have false positive HIV testing
- Screening test positive, confirmatory test (done later, takes time) negative
- Within 4.5 y, 70% HOPE candidates (n=324) underwent kidney transplant vs 43% non-HOPE*
- 22% of HOPE vs 39% of non-HOPE candidates died or were removed from the waitlist*
- Median transplant wait time: 10.3 months for HOPE vs 60.8 mo for non-HOPE (P < 0.001)*
- + HOPE candidates had a 3.30-fold higher kidney transplant rate*

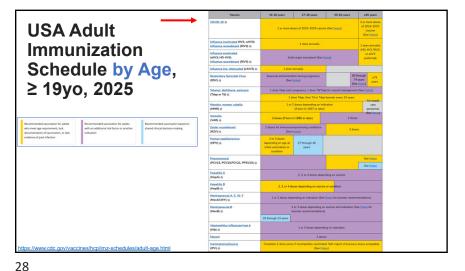

Motter et al, Transplantation 2024

23

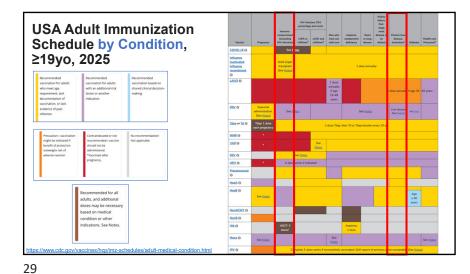
Prevention & Prophylaxis: Solid Organ Transplant

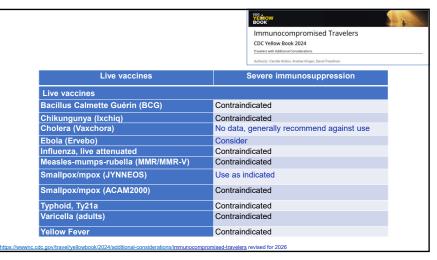
- Pre-immunosuppression evaluation**
 - Vaccines
 - Screening for latent infections
 - Plan for chronic infections
 - Optimize diabetes, stop smoking/marijuana use, etc
 - Education
- · Management: peritransplant/initiation of immunomodulatory tx
- Prophylaxis and/or screening after transplant/immunomodulatory therapy started

Speaker: Camille Kotton, MD



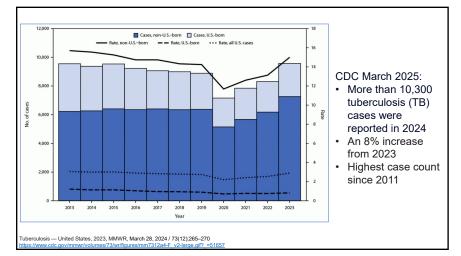
Pre-Immunosuppression Evaluation (MGH)

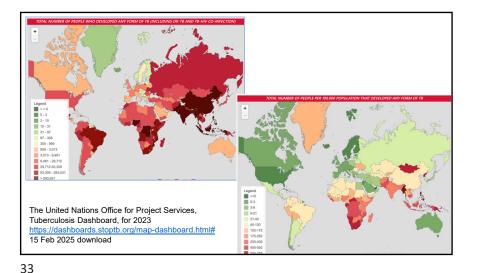

	Everyone	If risk factors
Hepatitis B surface antigen	х	
Hepatitis B core antibody (IgG not IgM)	х	
Hepatitis B surface antibody	х	
Hepatitis C	х	
HIV	х	
Tuberculosis screening	х	
Coccidioides serology		х
Strongyloides serology		х
Trypanosoma cruzi (Chagas disease)		х


26

Solid Organ Transplant Evaluation (MGH)						
	Everyone	Vaccinate if neg	lf risk factors			
Hepatitis A	х	x				
Hepatitis B surface antigen	х					
Hepatitis B core antibody (IgG not IgM)	х					
Hepatitis B surface antibody	х	x				
Hepatitis C	х					
HIV	х					
Tuberculosis screening	х					
Varicella	х	х				
Cytomegalovirus	х					
Mumps-measles-rubella	х	x				
Syphilis antibody	х					
Coccidioides antibody			х			
Strongyloides serology			х			
Trypanosoma cruzi (Chagas disease)			x			

Speaker: Camille Kotton, MD




30

CDC: Who Should Get Tested for TB TB tests are generally not needed for people with a low risk of infection Certain people should be tested for TB bacteria because they are more likely to get TB disease, including: - People who have spent time with someone who has TB disease - People with HIV infection or another medical problem that weakens the immune system - People who have symptoms of TB disease (fever, night sweats, cough, and weight loss) - People from a country where TB disease is common (most countries in Latin America, the Caribbean, Africa, Asia, Eastern Europe, and Russia) - People who live or work somewhere in the US where TB disease is more common (homeless shelters, prison or jails, or some nursing homes) - People who use illegal drugs

www.cdc.gov/tb/t

Speaker: Camille Kotton, MD

Latent TB Screening

- · Medical history
- Epidemiologic risk factors
- TB skin test (TST)
- Interferon gamma release assay (IGRA) (blood test) (sometimes preferentially vs TST, IDSA guidelines 2016)
 - T-SPOT.®TB
 - QuantiFERON®-TB Gold
- Radiographic findings
 - Old granulomatous disease, apical scarring
- Clinical pearl: search for "granuloma" in the electronic medical record

34

T-SPOT.®TB and QuantiFERON®-TB Gold

- Enumerates effector T-cell response to stimulation with a combination of peptides simulating ESAT-6 and CFP10 (+ TB7.7 for QFN) antigens
- Detects prior exposure to:
 - *M. tuberculosis* complex organisms (*M. tuberculosis, M. bovis, M. africanum, M. microti, M. canetti*)
 - M. kansasii, M. szulgai, and M. marinum
- Not + with prior BCG vaccine (bacille Calmette–Guérin)

• Interpret test correctly:

- If either test or PPD positive, take as positive
- Borderline results = partway b/w + and negative
- Indeterminate results = assay did not work

Question #1

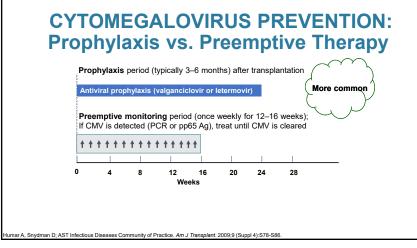
Your patient has latent TB. Should and when should you start chemoprophylaxis? When can immunosuppressive medications be started?

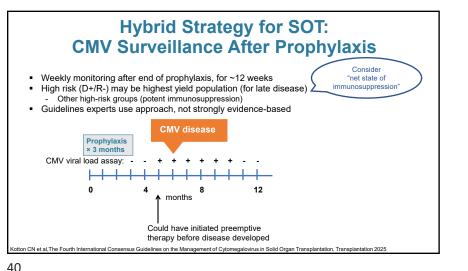
- A. Start TB chemoprophylaxis ASAP as per guidelines. (Ensure no active TB, pulmonary or extrapulmonary.) Can start immunosuppression any time.
- B. Avoid TB chemoprophylaxis. Too many side effects, and too much hassle.
- C. Most of my patients had BCG vaccine as children, and test false + as older adults. I don't give TB chemoprophylaxis.

Question #1

Your patient has latent TB. Should and when should you start chemoprophylaxis? When can immunosuppressive medications be started?

- A. Start TB chemoprophylaxis ASAP as per guidelines. (Ensure no active TB, pulmonary or extrapulmonary.) Can start immunosuppression any time.
- B. Avoid TB chemoprophylaxis. Too many side effects, and too much hassle.
- C. Most of my patients had BCG vaccine as children, and test false + as older adults. I don't give TB chemoprophylaxis.


37


Excellent Prophylaxis is Paramount...

and provides important clues on boards questions

- Antivirals
- Pneumocystis/Toxoplasmosis
- Antifungals

38

Speaker: Camille Kotton, MD

Prophylaxis: Solid Organ Transplant Massachusetts General Hospital

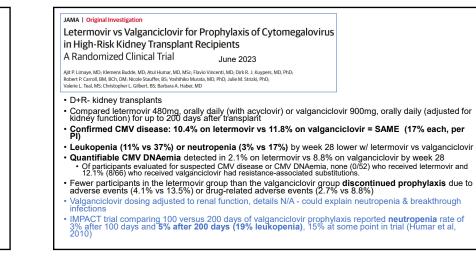
CMV/Herpes Antiviral Prophylaxis

Valganciclovir if any CMV risk (if either donor and/or recipient are CMV positive)
 Prevents CMV, herpes, varicella/zoster

Acyclovir/valacyclovir/famvir if no CMV risk Prevents herpes, varicella/zoster

- Frevents herpes, varicella/zoster

Duration varies, 3-6 months is common (longer for lung transplant)


Main side effect is leukopenia and cost with valganciclovir

Donor CMV Antibody	Recipient CMV Antibody	Prophylaxis	Duration
+	+		Antithymocyte globulin and
•	+	Valganciclovir	D+R- → 6 months
+	-		All others 3 months
-	-	ACV/Famvir/ValACV	

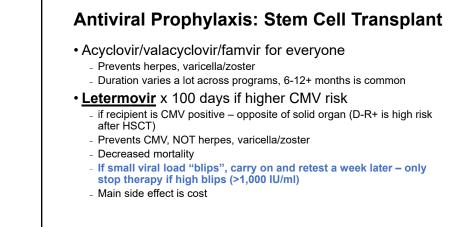
Anti-Pneumocystis/anti-bacterial

- Trimethoprim-sulfamethoxazole x 6-12 months (longer for heart/lung transplants)
- or dapsone or atovaquone if true allergy

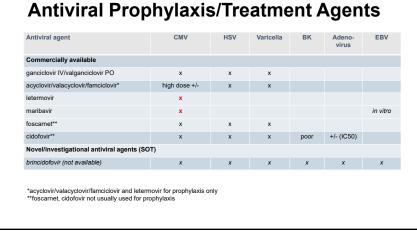
41

MERCK June 6, 2023 U.S. FDA Approves New Indication for Merck's PREVYMIS® (letermovir) for Prevention of Cytomegalovirus (CMV) Disease in High-Risk Adult Kidney Transplant Recipients **Important Drug Interactions** Tacrolimus Cyclosporine Azoles U\$\$271 letermovir 480mg/d vs U\$\$117 VGCV 900mg/d per goodrx.com (March 2025)	PREVYMIS® (letermovir) tablets, for oral use PREVYMIS® (letermovir) injection, for intravenous use Initial U.S. Approval: 2017
---	--

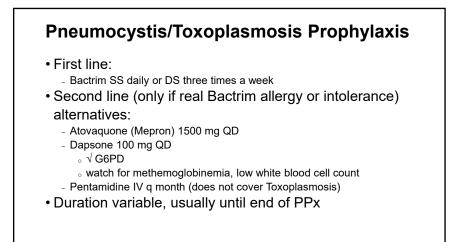
Organ	Serostatus	Risk level	Recommended=	Alternate
All	D-/R-	Low	Monitoring for clinical symptoms; con- sider antiviral prophylaxis against other heroes infections	Preemptive therapy (if higher risk, ie, significant transfusions)
Kidney	D+/R-	High	6 mo of (V)GCV or 6 mo of LET pr preemptive therapy	High-dose VALACY
	R+	Intermediate	3 mo of VGCV or preemptive therapy	High-dose VALACY. If on mTOR-based immu- nosuppression, preemptive therapy or close clinical monitoring recommended
Liver	D+/R-	High	3-6 mo of VGCV or preemptive therapy	
	R+	Intermediate	3 mo of VGCV or preemptive therapy	
Pancreas	D+/R-	High	3-6 mo of VGCV	Preemptive therapy
	R+	Intermediate	3 mo of VGCV or preemptive therapy	
Islet	D+/R-	Intermediate	3 mo of VGCV	Preemptive therapy
	R+	Intermediate	3 mo of VGCV or preemptive therapy	
Heart	D+/R-	High	3-6 mo of (V)GCV	-Preemptive therapy
				-Some experts add CMVIG to prophylaxis
	R+	Intermediate	3 mo of MGCV or preemptive therapy	
Lung	D+/R-	High	12 mo of (V)GCV	-Preemptive therapy
	R+	Intermediate	6-12 mo of (V)GCV	-Some experts add CMVIG to prophylaxis
Intestinal, composite	D+/R-	High	Minimum 6 mo (V)GCV	-Preemptive therapy
tissue	R+	High	3–6 mo (V)GCV	-Some experts add CMVIG to prophylaxis


43

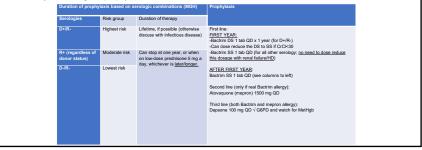
Kotto


Speaker: Camille Kotton, MD

Organ	Serostatus	Risk level	Recommended ^a	Alternate
All	D-/R-	Low	Monitoring for clinical symptoms; consider antiviral prophylaxis against other herpes infections	Preemptive therapy (if higher risk, i.e. significant transfusions)
Kidney	D+/R-	High	6 months of GCV/VGCV OR 6 months of LET OR Preemptive therapy	High dose VALACY
	R+	Intermediate	3 months of VGCV OR Preemptive therapy	High dose VALACY. If on mTOR-based immunosuppression, preemptive therapy or close clinical monitoring recommended
Liver	D+R-	High	3–6 months of VGCV OR Preemptive therapy	
	R+	Intermediate	3 months of VGCV OR Preemptive therapy	
Pancreas	D+R-	High	3–6 months of VGCV	Preemptive therapy
	R+	Intermediate	3 months of VGCV OR Preemptive therapy	
Islet	D+R-	Intermediate	3 months of VGCV	Preemptive therapy
	R+	Intermediate	3 months of VGCV OR Preemptive therapy	
Heart	D+/R-	High	3–6 months of GCV/VGCV	-Preemptive therapy -Some experts add CMVIG to prophylaxis
	R+	Intermediate	3 months of GCV/VGCV OR Preemptive therapy	
Lung	D+/R-	High	12 months of GCV/VGCV	-Preemptive therapy
	R+	Intermediate	6-12 months of GCV/VGCV	-Some experts add CMVIG to prophylaxis



46


Speaker: Camille Kotton, MD

49

Approach to Toxoplasmosis Prophylaxis

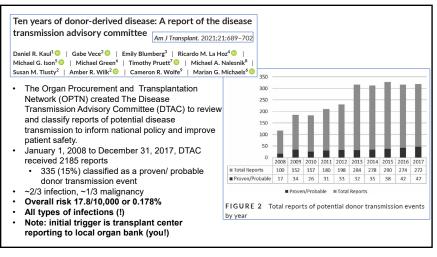
- Toxoplasmosis risk highest in Donor +/Recipient seronegative = 50-75% risk of symptomatic infection without prophylaxis within 3 months of heart transplant (much lower with other organs)
- ~7% of Americans age 12-49y are seropositive (<u>https://www.ncbi.nlm.nih.gov/pubmed/25012250</u>)
 Infection more common in patients from endemic regions (e.g., France, Caribbean)
- Can present in any organ system (CNS abscess, pneumonia, myocarditis, disseminated disease)
- Very rare with good prophylaxis

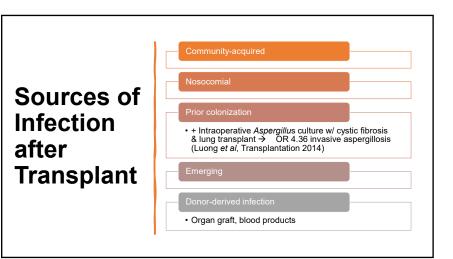
50

Antifungal Prophylaxis: Solid Organ Transplant

Organ	Common Practice	Comments
Kidney, liver, heart	None for most; some programs give fluconazole/echinocandins peri-liver	Some Nystatin swish and swallow
Pancreas	Fluconazole post-op for variable time, < 1 month	
Lung	Voriconazole, posaconazole, itraconazole for variable times after transplant	Voriconazole and augmented skin cancer, osteitis risks a major concern
Intestinal transplant, Composite tissue	Often longer courses of fluconazole/echinocandins	

Antifungal Prophylaxis: Hematopoietic Stem Cell Transplant


- · Fluconazole often used in first 100 days after HSCT
 - Generally, for higher risk receipts
 - Classic population for C. krusei, R to fluconazole
- Posaconazole generally reserved for higher risk patients
 Only FDA approved agent for this indication
- Voriconazole higher risk of mucormycosis reported
- Isavuconazole not approved for prophylaxis, but often used, less drug interactions and no QT interval prolongation


Speaker: Camille Kotton, MD

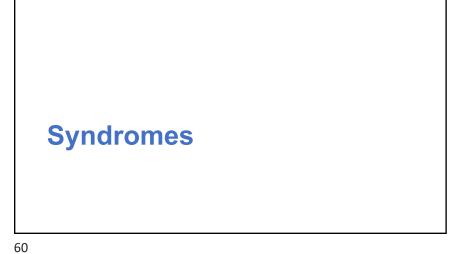
- Usually covers mucormycosis (lower MICs than isavuconazole)

53

54

iniectious agent	transplant	units given	component		Incubation	Recipient outcomes	Kelefence	real
WNV	Heart	174	Apheresis platelets	Perioperative period	2 weeks	Severe neurological impairment	Murtagh et al [33]	2002
Yellow fever	Kidney (2)	N/A	Blood transfusion	27 days prior to organ donation	4 weeks	Dead (1)	Gould et al [36]	2021
vaccine virus	Heart		(received by donor)	(received by donor)	17 days	Dead		
	Liver				15 days	Recovered		
ніv	Kidney	Unspecified	Fresh frozen plasma	Unspecified	Recipient asymptomatic	Commenced on antiretroviral therapy	CDC [58]	2008
Trypanosoma cruzi	Kidney	1	Apheresis platelets	4 months prior to transplantation	>2 years	Dead	Ries et al [70]	2008
rom Stewart AG & Ko	tton CN. Impact of	of Blood Donation F	Biovidiance and Transfirs	on Transmitted Infections on Orga	n Transplantation	accented for publication. T	ransplant ID 2024	

OL-3 Bootcamp: Transplant Speaker: Camille Kotton, MD


	of donor-derive on advisory com	mittee	report of the disea Transplant. 2021;21:689-7			
Michael G. Ison ⁵	O Michael Green ⁶	Timothy Pruett	Ricardo M. La Hoz ⁴ ⁷ Michael A. Nalesnik olfe ⁹ Marian G. Michael			
TABLE 1 Prov 2008-2017	ven and probable infec	tion transmissions	by type (by number of path	ogens/syndromes ir	n proven/probable donors)	
Category of Infection	Pathogen		Total p/p: (percent of p/p by category)	Comment		
Viral	Cytomegalovirus	Fungal (2)	Aspergillus		7 (13)	
	Hepatitis B virus		Mucorales		2 (4)	(one cotransmission with Aspergillus)
	Hepatitis C virus		Candida		13 (24)	
	Lymphocytic choric		Coccidioidomycosis		10 (19)	
	Community respira		Histoplasmosis		7 (13)	
	Parvovirus		Cryptococcus		11 (20)	
	West Nile virus		Other		4 (7)	Scopulariopsis (1), Trichosporon (1), Geotrichum (1), Microsporidio
	Other					(2)
	Total Viral		Total Fungal		54 pathogens (22) from 53	
Bacterial (1)	Gram-positive		-		donors	
	Staphylococcus aure Enterococcus	Mycobacterial	Tuberculosis		9 (4)	
	Other					
	Gram-negative	Parasitic	Strongyloides		13 (42)	
	Enterobacteriaceae		Toxoplasmosis		11 (35)	
	Pseudomonas		Trypanosomiasis		3 (10)	
	Other		Balamuthia		2 (6)	
			Other		2 (6)	Amoebic encephalitis (1), Schistosomiasis (1)
	Mycoplasma spp.					Amoebic encephancis (1), schistosomiasis (1)
	Other		Total Parasite		31 (12)	
	Total Bacterial		Total Infectious Agent	s/Syndromes	250 pathogens from 244 donors	

Kaul ¹ Gabe Vece 5. Ison ⁵ Hichael C . Tlusty ² Amber R. W	Green ⁶ Timothy Pruett ⁷ /ilk ² Cameron R. Wolf	e ² Marian G. Michaels ⁶			
TABLE 7 Time	to presentation of do Median (Range)	nor-derived infection 0-30 days	31-90 days	91-180 days	> 180 days
Viral	48 days (11-776)	LCM WNV (4) RSV	CMV (3) Parvovirus WNV	Hepatitis C	Hepatitis B
Bacterial	14 days (2-45)	Assorted (23)	Klebsiella		
Fungal	18 days (5-256)	Candida (3) Coccidioides (6) Aspergillus Cryptococcus (4) Scopulariopsis Zygomycetes (2)	Aspergillus Coccidioides (3) Histoplasmosis		Aspergillus
Mycobacterial	67 days (8-148)	M. tuberculosis (2)	M. tuberculosis (2)	M. tuberculosis (2)	
Parasitic	50 days (70-145)	Toxoplasma Balamuthia (5)	Strongyloides Toxoplasma Encephalitozoon (2)	Strongyloides (2) Toxoplasma Encephalitozoon Balamuthia	

58

57

Daniel R. Kaul ¹ 💿 Gabe Michael G. Ison ⁵ 😳 Mic	TABLE 8 Summary of key lessons learned					
uusan M. Tlusty ² Ambe	Recognition of donor-derived disease Two thrids of Dol develop symptoms within 30 days of transplantation Endemic fungal, parasitic, mycobacterial may be manifest after 30 days Consider donor exposures in cases of unexpected recipient liness Atthough infections predominate, one third of DDD is noninfectious DDD from living donors may occur but is less common than from deceased donors	Trends requiring future confirmation Breast cancer and thyroid cancer were not transmitted using current screening protocols Recipitaroy viruses, mycoplasma, tuberculosis, aspergillus primarily transmitted to lurg recipients Bacterial and candida DDI rarely noted later than 30 days posttranspillar D + R- toxoplasma non-heart recipients are at high enough risk to meit prophylaxis Peanut allergy rarely transmitted to kidney recipients No groven/probabit transmission of stypical mycobacteria or prion disease DDD from malignary (other than renal cell carcinoma) has highest mortality MDRO organisms are a common cause of bacterial DDI				
	Donor evaluation Critical evaluation to determine accuracy of listed cause of death Consideration of universal or targeted donor testing (even if results learned posttransplant as early interventions effectively prevent development of disease) Strongyloides Cocidioides Cryptococcus Improved mechanism for development and evaluation of donor tests	System improvements Improve early warning systems and global harmonization to recognize and address emerging trends Lengthen and improve follow-up to better attribute death, graft loss Active tracking of recipients of donors with findings that suggest risk Rapid ability to scale up testing as new pathogens emerge				
	Reporting Critical as profound impact on other recipients because involvement of multiple recipients common allowing for interventions; graft or death loss occurred in about one third of recipients with DDD Culture of artery'reporting does not result in ponalities unless significant policy violations DTAC information benefits all in transplant community Morbidity and mortality of DD issufficant and attention to OPO or UNOS DDI communications necessary					

Speaker: Camille Kotton, MD

CMV: the most common pathogen after transplant, one of the "great masqueraders"

- Asymptomatic viremia**
- CMV syndrome
- End organ disease:
 - Colitis
- Pneumonitis
- Retinitis

- Best diagnosed by CMV viral load
- Best treated with valganciclovir or ganciclovir IV
- Treat to resolution of infection and/or viral load – check weekly
- If low absolute lymphocyte count at end, consider secondary prophylaxis or monitoring

Pathogens Contribute to Infection Risk: Indirect Effects of CMV

General indirect effectselevated risks

- · Bacterial, fungal, viral infections
- Post-transplant lymphoma (PTLD)
- Cardiovascular events
- New-onset diabetes mellitus after transplantation
- Immunosenescence
- Acute rejection

Kotton, CMV: Prevention, Diagnosis and Therapy, AJT 2013

Mortality

62

Transplant-specific indirect effects

- Chronic allograft nephropathy and/or allograft loss after renal transplant
- Accelerated hepatitis C
 recurrence after liver transplant
- Hepatic artery thrombosis after liver transplant
- Allograft vasculopathy after cardiac transplant
- Bronchiolitis obliterans after lung transplant

61

Management of Mild to Moderate CMV Infection-I

Who to treat

If Donor positive/recipient seronegative (highest risk group), likely need to treat if CMV viral load > 500 IU/ml (start at lower level if very low lymphocyte count or potent immunosuppression)

If recipient seropositive, likely need to treat if CMV viral load > 1500 - 2000 IU/ml (start at lower level if very low lymphocyte count or potent immunosuppression)

If not starting treatment, recheck all a week later - follow closely to see if better or worse

Diagnostically

Check weekly CMV DNAemia (i.e. CMV viral load) on plasma (not whole blood); trend until there are two negative/very low (<300 IU/ml) results, then stop therapy; consider weekly monitoring after the end of treatment for 8-12 weeks so as to capture early recurrent disease (especially in high-risk D+R- patients, or with higher immunosuppression).

Best to check CMV DNAemia with same specimen type, on same testing platform and at same lab, as whole blood can be +/- 10x higher (extremely variable) result c/w plasma and test results can vary significantly across different labs and testing platforms; best to pick one lab and use that for comparison.

If CMV DNA level does not fall after 2-3 weeks, consider sending CMV resistance testing. This does not need to be sent after 1 week of treatment where we commonly see some increase in the CMV viral load.

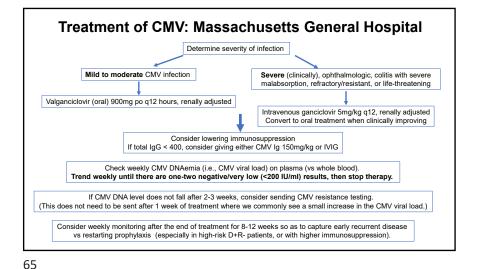
Consider checking total IgG level at the time of initiation of treatment. We would replete if the total IgG level was less than 400 with either CMV immunoglobulin or IVIG.

Management of Mild to Moderate CMV Infection-II

Therapeutically

Start valganciclovir 900mg po q12 hours, renally adjusted as needed Note: would use intravenous therapy if severe, ophthalmologic, refractory/resistant, or life-threatening disease. Consider using intravenous therapy with significant colitis with concern for malabsorption, or if viral load >100,000 IU/ml.

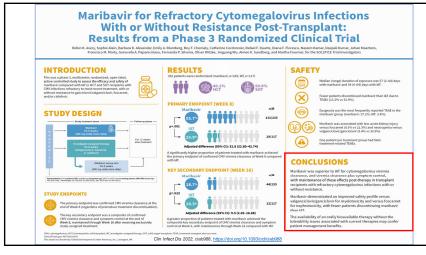
Consider lowering immunosuppression

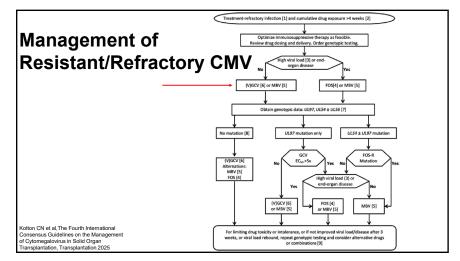

If total IgG < 400, consider giving either CMV Ig 150mg/kg or IVIG (especially if severe or resistant disease)

References

Kotton CN, Kumar D, Caliendo AM, Huprikar S, Chou S, Danziger-Isakov L, Humar A; The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation. Transplantation Society International CMV Consensus Group*. Transplantation. 2018 Mar 29.

Are We There Yet? Impact of the First International Standard for Cytomegalovirus DNA on the Harmonization of Results Reported on Plasma Samples. Preiksaitis JK et al, Clin Infect Dis. 2016 Sep 1;63(5):583-9. doi: 10.1093/cid/ciw370.


OL-3 Bootcamp: Transplant Speaker: Camille Kotton, MD



What to do with Very Low Viral Load Cases? (<500-1000 IU/ml Plasma or Whole Blood)

- Treatment not always indicated
- •With very low viral loads, I think about:
 - Risk factors for severe viral infection (D+R- versus R+)
 - Net state of immunosuppression
- Absolute lymphocyte count
- · Likelihood of major disease flare with waiting
- Ability to reliably repeat testing
- Important to understand issues with diagnostics at very low results
- Retesting in a week is key so you know which trend of infection
- Approaches vary widely among clinicians; need to formalize guidance

68

Speaker: Camille Kotton, MD

The Dreaded Pulmonary Nodule

For the boards (and clinical medicine), consider the prophylaxis and what's not covered

Let the prophylaxis and epidemiology drive your differential diagnosis

Who Gets Fungal Infections?

- Post-solid organ transplant: Incidence of invasive fungal infections in the first year has been reported to be 3%¹
- Candidiasis (sterile space), esp. liver transplant*surgery
- Cryptococcal disease
- Among most common causes of meningitis
- Invasive aspergillosis in 1-15%²
 - Accounts for significant % of deaths in first year
- Mortality dropping in recent times, however
 Mucormycosis less common, higher mortality
- Mucormycosis less common, nigner mortality
- Stem cell transplant: similar, longer risk if graft-vs-host disease
- Non-transplant immunocompromised hosts: less frequent/"net state of immunosuppression"

1 Shoham S, Marr K. Invasive fungal infections in solid organ transplant recipients. Future Microbio 2012; 7(5): 639-655 2 Singh N. Husain S. Aspergillosis in Solid Organ Transplantation. AJT. 2013

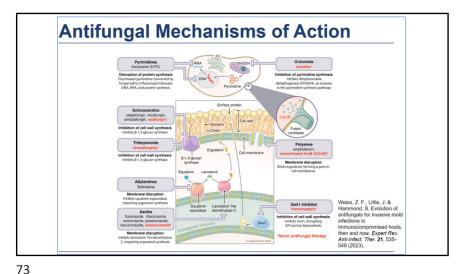
70

69

Diagnostics

Culture

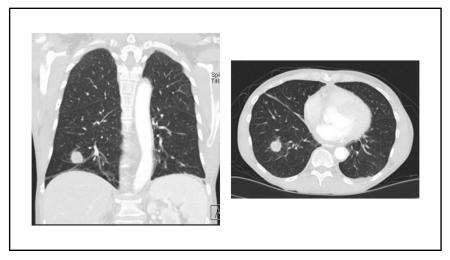
- Fungal stain and culture
- Notify lab not to mince specimen if suspicion of mucormycosis
- Fungal isolators (blood) very rarely +
- 。 Candida will grow in routine cultures
- 。 Histoplasma better; lysis centrifugation isolators is best

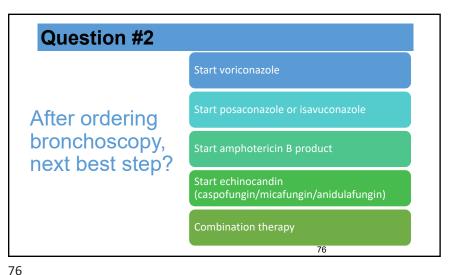

Pathology: Morphology

- Septate (Aspergillus) vs non-septate (Mucor/Zygomycetes) hyphae
- Grocott-Gomori's (or Gömöri) methenamine silver stain
- Periodic acid-Schiff (PAS)

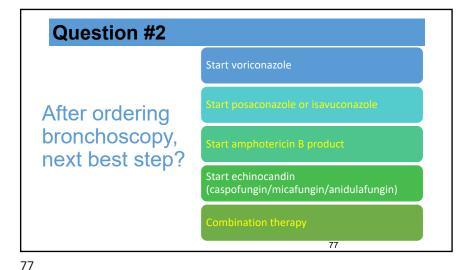
Diagnostics: Fungal Markers

Diagnostic Assay	Specimen	Comments	
Cryptococcal antigen	Blood, CSF	High sensitivity/specificity	
1,3 beta – D - glucan	Blood	Primarily for yeast; Low sensitivity/moderate specificit Excellent for Pneumocystis	
Galactomannan	Blood, BAL, other body fluids	Primarily for Aspergillus; Low sensitivity/high specificity on blood, higher sensitivity on body fluids	
Aspergillus PCR	Blood, BAL, other body fluids		
Karius Spectrum, a cell-free DNA (cfDNA) test to identify and quantify fungal pathogens	Blood	Uses shotgun metagenomic sequencing Higher sensitivity with proven vs probable disease (60% vs 37% Sim BZ et al CID 2025)	

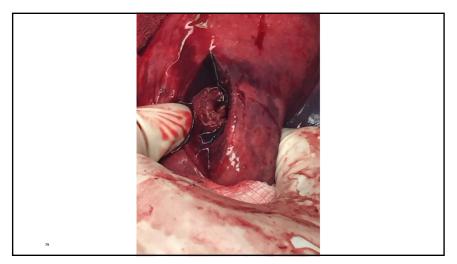

Speaker: Camille Kotton, MD



Clinical Vignette


- 54-year-old woman with history of primary systemic AL amyloidosis, complicated by cardiac amyloidosis, treated cytoxan/bortezomib/dexamethasone initially, followed by lenalidomide/dexamethasone
- Orthotopic cardiac transplant Feb 2016
- Autologous stem cell transplant, Day 0=7/11/16.
- CMV DNA VL on Day 0 was 29,800 IU/ml.
- Neutropenic sepsis with a blood culture on Day 5 with *Strep salivarius*
- Ongoing fevers, new 2 cm pulmonary nodule by CT on Day 18

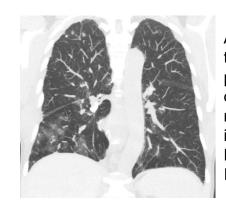
74



Speaker: Camille Kotton, MD

- "She has had a dry cough but denies any sputum production, chest pain, SOB or headache. She has felt very well and was quite determined to be discharged in the next few days."
- · Voriconazole started
- She underwent bronchoscopy, radial EBUS, washings, brushings and transbronchial biopsy → nonseptate hyphae seen
- Diagnosis: likely Zygomycetes
- She was switched from voriconazole to dual antifungal therapy with loading of isavuconazole and Ambisome.
- Repeat CT scan performed 2 days later showed significant increase in size of the nodule with new satellite lesions. She proceeded to RLL resection that evening by the cardiothoracic surgeons.

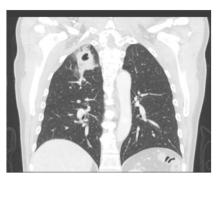
78



GMS stain: wide, non-septate hyphae w/ 90° branching, 40x Courtesy of Alexander O. Subtelny, M.D., Ph.D.

Speaker: Camille Kotton, MD

Very Rare RHIZOPUS SPECIES SUSCEPTIBILITY Performed at UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER, Dept of Pathology, San Antonio, TX MIC DILUTION METHOD No CLSI interpretive guidelines available Amphotericin B MIC=1 Isavuconazole MIC=1 Miconazole MIC=2 Posaconazole MIC=0.5 In view of this, Ambisome was stopped on POD #9 and isavuconazole converted to 372mg daily for months/indefinite, plan is for radiographic resolution, immune reconstitution (heart transplant immunosuppression is for life).


A year after transplant, she presented with disseminated zoster, new patchy infiltrates. Responded well to IV acyclovir.

82

84

What's This?

- Man in 50s diagnosed with multiple myeloma in 2011 → autologous stem cell transplant in March 2019.
- Due to disease progression in June 2020, he was treated with daratumumab and pomalidomide. He received radiation therapy to the thoracic and cervical spine.
- He consented to participate in a clinical trial protocol and underwent CAR infusion in January 2021. On fluconazole and acyclovir prophylaxis.
- Routine screening PET 4 months later "new thick walled multiloculated cavitary lesion in the right upper lobe with surrounding groundglass and clustered nodularity is concerning for infection, including bacterial as well as atypical and fungal infections in an immunocompromised patient". No symptoms at all.

Epidemiology (ID Fellow Note)

- · Living situation lives with wife, 3 kids
- Outdoor exposures rare, walks outside with dog in rode, has stopped dirt biking/hiking with thrombocytopenia
- Occupational exposures Denies, works as a contractor for DoD, currently working at home
- · Hobbies mostly spending time at home right now
- Travel Frequent travel pre-pandemic for work, has been to Australia, multiple countries in Asia and Europe, never to Africa or South America
- TB no history of TB or known TB exposures; homeless or incarcerated? Denies
- Animals Dog
- Food raw or unpasteurized foods? Denies
- Dental work None recent, does have a wisdom tooth pressing on a facial nerve
- · Smoking Denies
- Alcohol Denies
- Recreational drugs Denies
- Sex and prior STIs Denies

Question #3

What would you do next?

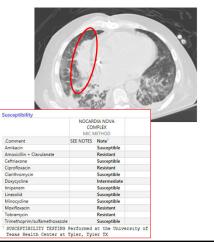
- A. Start voriconazole, loading dose then maintenance based on weight
- B. Start "vancopime" (cefepime plus vancomycin)
- C. Start azithromycin
- D. A-C (all of the above)
- E. Bronchoscopy

85

Question #3

What would you do next?

- A. Start voriconazole, loading dose then maintenance based on weight
- B. Start "vancopime" (cefepime plus vancomycin)
- C. Start azithromycin
- D. A-C (all of the above)
- E. Bronchoscopy


86

Pseudomonas! 04/19/2021 04/29/202 All other studies negative: 1657 1323 · BAL mycobacterial, fungal stains/cultures · Cryptococcal antigen (blood) 1,3 beta D glucan (blood) Suscepti · Galactomannan (BAL and blood) • Pathology: Bronchial epithelium with rare scattered neutrophils. Alveolated lung with fibroinflammatory changes and chronic Amikacir inflammation. There is no evidence of Cefepime malignancy. No microorganisms are seen on Brown-Hopps, GMS, Steiner, PAS-D, FITE, Ceftazidi Ciproflox and AFB stains. Immunohistochemical stains for CMV, HSV, VZV, and adenovirus are Levofloxa negative. Trichrome and elastic stains were Meroper examined. The histologic findings are Piperacil compatible with acute infection. tazobactam <=4 Susceptible Tobramycin <=1 Susceptible

	ound cul 1890520	ture/smear		
	Abnormal)			
0	ther from	Biopsy		
RI	JL LUNG	TBBX		
ibility	,			
	Pseu	domonas		
	aeruginosa			
	MIC	METHOD		
n	<=2	Susceptible		
e	2	Susceptible		
ime	2	Susceptible		
xacin	<=0.25	Susceptible		
acin	1	Susceptible		
nem	<=0.25	Susceptible		
llin-				
		Succeptible		

Pneumonia

- 45-year-old s/p heart transplant 3 months earlier on posaconazole, atovaquone prophylaxis (not on TMP-SMX due to renal failure)
- New pneumonia, right middle lobe
- What is the cause?

Speaker: Camille Kotton, MD

Let's Switch to Parasites

89

Clinical Vignette

64-year-old man from Dominican Republic with end-stage liver disease, chronic abdominal pain, listed for liver transplant

- Eosinophilia (up to 70%) x 6 months
- · Recurrent enteric Gram-negative rod bacteremias
- · Fluffy pulmonary infiltrates
- · What does he have?

Toxoplasmosis

Epidemiology:

1988–1994 (NHANES III): ~22.5% of individuals aged 12-49 years were seropositive 1999–2000: seroprevalence decreased to 14.3% 2009–2010: Further decline to 10.1%

Syndromes seen after Transplant:

Toxoplasma encephalitis

- Headache, confusion to coma, seizures, focal neurologic deficits Pneumonitis (lung inflammation)
- Myocarditis (heart inflammation)

Chorioretinitis

Diagnostics

Serology is useful for risk assessment, not for diagnosing active disease **Toxoplasma PCR** on blood, CSF, BAL (bronchoalveolar lavage), or tissue Highly sensitive and specific for detecting T. gondii DNA

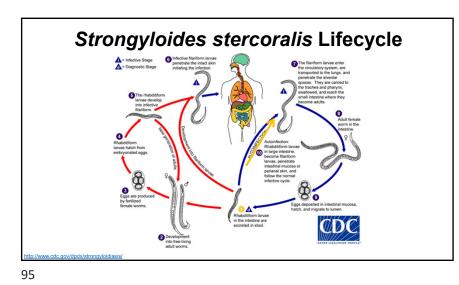
90

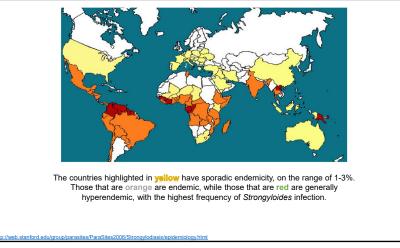
Strongyloides Antibody by ELISA: 100.00

INTERPRETATION: POSITIVE

Test Results

All reactions of <=1.7 units/ml should be considered NEGATIVE. All reactions >1.7 units/ml should be considered POSITIVE, indicative of infection with *Strongyloides stercoralis* at some indeterminate time. Sensitivity of the test is 93% and specificity is 98%.


Centers for Disease Control testing


Strongyloides

- Nematode "roundworm"
- 100-200 million people worldwide are infected
- Autoinfection*
- >50% mortality immunocompromised patients with disseminated disease

Diagnostics Stewardship	MASSACHUSETTS GENERAL HOSPITAL TRANSPLANT CENTH
Consider best methods to achieve most likely diagnosis; Hickam's di razor	ctum* vs Occam's
The initial work up can be protocol driven; we have syndromic evaluatemergency room	ations in the
Molecular diagnostics are superior but require us to be specific in our	r requests
Multiplex (i.e., Biofire) helps	
Non-invasive fungal diagnostics have been disappointing	
1,3 beta D glucan, galactomannan (still love cryptococcal anti	igen!)
serum Mucorales polymerase chain reaction is emerging	
Toxoplasma PCR excellent example of sensitive and specific non-inv diagnosis)	vasive test (rare
New technologies (i.e., cell free DNA testing) are emerging/interestin	g
The sooner we achieve a diagnosis, the sooner we can stop broad-s antimicrobials & better outcomes for the patient	pectrum
ckam's dictum is usually stated as "patients can have as many diseases as they damn (or darn) well please". This aphorism has been attribute sam (1914-1970) an American physician, who was Chair of the Department of Medicine at the University of Indiana	ed to John W HARVARD MEDICAL SCH

Speaker: Camille Kotton, MD

Rapid Diagnosis of Disseminated Tuberculosis Using Cell-Free DNA Sequencing in a Kidney Transplant Recipient, **Transplantation 2023** Anna Apostolopoulou & Camille Nelson Kotton

- · Middle aged kidney transplant recipient presented with fevers
- Extensive workup done
- "On hospital day 13, while she remained febrile and without a definitive diagnosis, we sent a quantitative cfDNA test (Karius, Inc., Redwood City, CA). On HD 15, the Karius cfDNA test returned positive for M tuberculosis.
- Subsequently, the mycobacterial blood, urine, and bronchoalveolar lavage cultures grew M tuberculosis on hospital days 17, 17, and 21, respectively). Bone cultures grew M tuberculosis 34 days after biopsy (after discharged from the hospital)."

Drug Interactions: Transplant & Antimicrobials

- Azoles
 - Voriconazole, posaconazole > fluconazole
 - Isavuconazole much less interaction
 - Increase tacrolimus (or cyclosporine, rapamycin)
- Rifamycins
 - Rifabutin < rifampin (=rifampicin)
 - Decrease tacrolimus (or cyclosporine, rapamycin)
 - Increase prednisone
- QT prolongation
 - Combination effect
 - May be present with liver disease
- Recommended: Use of on-line drug interaction calculator

97

99

Speaker: Camille Kotton, MD

Cardinal Rules 2025: Immunosuppression and Infection

- 1. Immunosuppression and infections not always straightforward
- 2. Be prepared to be surprised think broadly
- 3. Prepare patient before immunosuppression role for ID specialists
- 4. Prophylaxis & vaccines alter the risk equation Primary and secondary prevention
- 5. Consider the source of infection: donor, recipient, blood products, geographic, more antibiotic resistance

101

Questions? ckotton@mgh.harvard.edu

@KottonNelson (Twitter)

MASSACHUSETTS GENERAL HOSPITAL TRANSPLANT CENTER